Predicting the elliptic curve congruential generator
نویسندگان
چکیده
منابع مشابه
On lattice profile of the elliptic curve linear congruential generators
Lattice tests are quality measures for assessing the intrinsic structure of pseudorandom number generators. Recently a new lattice test has been introduced by Niederreiter and Winterhof. In this paper, we present a general inequality that is satisfied by any periodic sequence. Then, we analyze the behavior of the linear congruential generators on elliptic curves (abbr. EC-LCG) under this new la...
متن کاملCryptanalyzing the Dual Elliptic Curve Pseudorandom Generator
The Dual Elliptic Curve Pseudorandom Generator (DEC PRG) is proposed by Barker and Kelsey [2]. It is claimed (see Section 10.3.1 of [2]) that the pseudorandom generator is secure unless the adversary can solve the elliptic curve discrete logarithm problem (ECDLP) for the corresponding elliptic curve. The claim is supported only by an informal discussion. No security reduction is given, that is,...
متن کاملElliptic curve analogues of a pseudorandom generator
Using the discrete logarithm in [7] and [9] a large family of pseudorandom binary sequences was constructed. Here we extend this construction. An interesting feature of this extension is that in certain special cases we get sequences involving points on elliptic curves. 2000 AMS Mathematics Subject Classification: 11K45. List of keywords and phrases: pseudorandom, elliptic curve.
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملCryptanalysis of the Dual Elliptic Curve Pseudorandom Generator
The Dual Elliptic Curve Pseudorandom Generator (DEC PRG) is proposed by Barker and Kelsey [2]. It is claimed (see Section 10.3.1 of [2]) that the pseudorandom generator is secure unless the adversary can solve the elliptic curve discrete logarithm problem (ECDLP) for the corresponding elliptic curve. The claim is supported only by an informal discussion. No security reduction is given, that is,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Algebra in Engineering, Communication and Computing
سال: 2016
ISSN: 0938-1279,1432-0622
DOI: 10.1007/s00200-016-0303-x